RIASSUNTO
Background
The microbiota plays an essential role in host health, particularly through competition with opportunistic pathogens. Changes in total bacterial load and microbiota structure can indicate early stages of disease, and information on the composition of bacterial communities is essential to understanding fish health. Although Red Snapper (Lutjanus campechanus) is an economically important species in recreational fisheries and a primary aquaculture candidate, no information is available on the microbial communities of this species. The aim of this study was to survey the microbiota of apparently healthy, wild-caught Red Snapper from the Gulf of Mexico. Sampled Red Snapper showed no physical signs of disease. Tissues that are either primary entry routes for pathogens (feces, gill) or essential to disease diagnosis (blood) were sampled. Bacteria were enumerated using culture-based techniques and characterized by pyrosequencing.
Results
Aerobic counts of feces and gill samples were 107 and 104 CFU g-1, respectively. All individuals had positive blood cultures with counts up to 23 CFU g-1. Gammaproteobacteria dominated the microbiota of all sample types, including the genera Pseudoalteromonas and Photobacterium in feces and Pseudomonas in blood and gill. Gill samples were also dominated by Vibrio while blood samples had high abundances of Nevskia. High variability in microbiota composition was observed between individuals, with percent differences in community composition ranging from 6 to 76 % in feces, 10 to 58 % in gill, and 52 to 64 % in blood.
Conclusions
This study provides the first characterization of the microbiota of the economically significant Red Snapper via pyrosequencing. Its role in fish health highlights the importance of understanding microbiota composition for future work on disease prevention using microbial manipulation.