RIASSUNTO
Rhodopsin mediates an essential step in image capture and is tightly associated with visual adaptations of aquatic organisms, especially species that live in dim light environments (e.g., the deep sea). The rh1 gene encoding rhodopsin was formerly considered a single-copy gene in genomes of vertebrates, but increasing exceptional cases have been found in teleost fish species. The main objective of this study was to determine to what extent the visual adaptation of teleosts might have been shaped by the duplication and loss of rh1 genes. For that purpose, homologous rh1/rh1-like sequences in genomes of ray-finned fishes from a wide taxonomic range were explored using a PCR-based method, data mining of public genetic/genomic databases, and subsequent phylogenomic analyses of the retrieved sequences. We show that a second copy of the fish-specific intron-less rh1 is present in the genomes of most anguillids (Elopomorpha), Hiodon alosoides (Osteoglossomorpha), and several clupeocephalan lineages. The phylogenetic analysis and comparisons of alternative scenarios for putative events of gene duplication and loss suggested that fish rh1 was likely duplicated twice during the early evolutionary history of teleosts, with one event coinciding with the hypothesized fish-specific genome duplication and the other in the common ancestor of the Clupeocephala. After these gene duplication events, duplicated genes were maintained in several teleost lineages, whereas some were secondarily lost in specific lineages. Alternative evolutionary schemes of rh1 and comparison with previous studies of gene evolution are also reviewed.