RIASSUNTO
ABSTRACT
Placodes are focal thickenings of the surface ectoderm which, together with neural crest, generate the peripheral nervous system of the vertebrate head. Here we examine how, in embryonic mice, apoptosis contributes to the remodelling of the primordial posterior placodal area (PPA) into physically separated otic and epibranchial placodes. Using pharmacological inhibition of apoptosis-associated caspases, we find evidence that apoptosis eliminates hitherto undiscovered rudiments of the lateral line sensory system which, in fish and aquatic amphibia, serves to detect movements, pressure changes or electric fields in the surrounding water. Our results refute the evolutionary theory, valid for more than a century that the whole lateral line was completely lost in amniotes. Instead, those parts of the PPA which, under experimental conditions, escape apoptosis have retained the developmental potential to produce lateral line placodes and the primordia of neuromasts that represent the major functional units of the mechanosensory lateral line system.