RIASSUNTO
Trajectory reconstruction is the process of inferring the path of a moving object between successive observations. In this paper, we propose a smoothing spline -- which we name the V-spline -- that incorporates position and velocity information and a penalty term that controls acceleration. We introduce a particular adaptive V-spline designed to control the impact of irregularly sampled observations and noisy velocity measurements. A cross-validation scheme for estimating the V-spline parameters is given and we detail the performance of the V-spline on four particularly challenging test datasets. Finally, an application of the V-spline to vehicle trajectory reconstruction in two dimensions is given, in which the penalty term is allowed to further depend on known operational characteristics of the vehicle.
Comment: 25 pages, submitted