RIASSUNTO
Abstract
Information on site fidelity and ranging patterns of wild animals is critical to understand how they use their environment and guide conservation and management strategies. Delphinids show a wide variety of site fidelity and ranging patterns. Between September 2013 and October 2015, we used boat‐based surveys, photographic identification, biopsy sampling, clustering analysis, and geographic information systems to determine the site‐fidelity patterns and representative ranges of southern Australian bottlenose dolphins (Tursiops cf. australis) inhabiting the inner area of Coffin Bay, a highly productive inverse estuary located within Thorny Passage Marine Park, South Australia. Agglomerative hierarchical clustering (AHC) of individuals’ site‐fidelity index and sighting rates indicated that the majority of dolphins within the inner area of Coffin Bay are “regular residents” (n = 125), followed by “occasional residents” (n = 28), and “occasional visitors” (n = 26). The low standard distance deviation indicated that resident dolphins remained close to their main center of use (range = 0.7–4.7 km, X ± SD = 2.3 ± 0.9 km). Representative ranges of resident dolphins were small (range = 3.9–33.5 km2, X ± SD = 15.2 ± 6.8 km2), with no significant differences between males and females (Kruskal–Wallis, χ2 = 0.426, p = .808). The representative range of 56% of the resident dolphins was restricted to a particular bay within the study area. The strong site fidelity and restricted ranging patterns among individuals could be linked to the high population density of this species in the inner area of Coffin Bay, coupled with differences in social structure and feeding habits. Our results emphasize the importance of productive habitats as a major factor driving site fidelity and restricted movement patterns in highly mobile marine mammals and the high conservation value of the inner area of Coffin Bay for southern Australian bottlenose dolphins.